Blog

Cómo debe trabajar un preparador/a físico en contexto deportivo

Soy de los que siempre ha pensado que la figura del preparador físico/a (PF) es la de un profesional especializado en entrenamiento para la mejora del rendimiento en el deporte, de la salud general en todas las etapas de la vida y de la recuperación de la condición física que se requiere como consecuencia del padecimiento de una enfermedad o de una lesión.

Con este enfoque amplio y por supuesto desde mi humilde perspectiva, un buen PF debería ser siempre capaz de desarrollar su trabajo al margen del objetivo general del mismo. Es decir, no creo demasiado en los PF excesivamente especializados en deportes concretos, en edades determinadas y en tipos particulares de entrenamiento.

Desde mi experiencia me atrevo a recomendar a los futuros PF que no se limiten y amplíen al máximo su formación y desarrollo profesional de tal forma que puedan realizar su trabajo con eficacia y seguridad, sea cual sea la actividad deportiva, actividad física o enfermedad o lesión a recuperar.

En el siguiente mapa conceptual se resume de forma simplificada y desde una aportación personal los pasos que puede seguir un PF en su trabajo cuando lo aplica en un contexto de deporte de competición.

Como siempre espero que pueda ser de vuestro interés y de utilidad en vuestra práctica cotidiana.

OPOSICIONES PARA EDUCACIÓN FÍSICA EN SECUNDARIA: TEMA 17 ACTUALIZADO

Con el desarrollo del Tema17 – Factores que intervienen en el trabajo de desarrollo de la condición física: intensidad y volumen; recuperación, duración y repeticiones se pretende revisar el conocimiento científico-técnico existente sobre la carga de entrenamiento y la necesidad de su manipulación y control para la optimización del entrenamiento o ejercicio físico y la prevención de patologías crónicas asociadas al sedentarismo.

El conocimiento que aporta al docente este tema le puede permitir la programación segura y eficaz de actividades físicas para los estudiantes de 12-18 años con el objetivo principal de mejorar su salud en general, muy especialmente en la prevención y tratamiento del sobrepeso y obesidad.

Photo by Li Sun on Pexels.com

OPOSICIONES EN SECUNDARIA: TEMA 19 ACTUALIZADO

Pongo a vuestra disposición la actualización del Tema 19. Procesos energéticos en la actividad física. Sistemas aeróbico y anaeróbico. Este tema es fundamental para disponer de conocimiento fundamentado en evidencia científica para ajustar de forma individual y coherente el volumen, la intensidad y la densidad de carga, ya sea en entrenamientos con jóvenes como para el alumnado en las clases de educación física en secundaria.

Con el desarrollo de este tema se pretende presentar el conocimiento científico más actual basado sobre los sistemas de producción de energía, su interacción y su contribución en los diferentes tipos de esfuerzo físico y su aplicación a las características particulares para una población de jóvenes de 12-18 años.

Espero que os guste.

Photo by Mantas Hesthaven on Pexels.com

Oposiciones en secundaria: tema 21 actualizado

Hoy toca resumir el tema 21: el sistema cardiorrespiratorio, estructura y funciones, características particulares del periodo evolutivo correspondiente a la etapa. Consideraciones para tener presentes en las clases de educación física.

Es un tema amplio pero a mi juicio fundamental para comprender las bases del entrenamiento o ejercicio físico de resistencia, las adaptaciones cardiovasculares y respiratorias que produce y su efecto en la prevención de enfermedad cardiovascular, respiratoria y síndrome metabólico.

Photo by Pixabay on Pexels.com

Oposiciones a secundaria: tema 16 actualizado

Se avecinan oposiciones a profesorado de secundaria en la especialidad de educación física y por ello intentaré, si el tiempo me lo permite, poner a vuestra disposición resúmenes estructurados y actualizados de algunos de los temas que componen este temario que ya data del BOE 226 21 setembro 1993 (pax 27427).

Hoy toca el tema 16, sobre las capacidades físicas básicas, concepto, clasificaciones, evolución de las mismas y evolución no desarrollo motor de los alumnos y las alumnas de Educación Secundaria.

Para facilitar el estudio de los temas aquí tenéis una tabla que agrupa los temas por bloques. A mi juicio esto os puede resultar muy útil ya que hay temas con contenido transversal y este conocimiento os puede ayudar a plantear una estrategia que optimice vuestro tiempo de estudio disponible.

BLOQUETEMAS
NúmeroCantidade%
Epistemoloxía111,54%
Pedagoxía2-657,69%
Desenvolvemento motor7-8-3034,62%
Kinesioloxía911,54%
Sistemas: naturais, analíticos e rítmicos10-1234,62%
Condición física e fisioloxía do exercicio13-291726,15%
Respiración e relaxación31-3223,08%
Deporte33-40812,31%
Xogos41-4334,62%
AF artístico-expresiva44-4634,62%
AF en medio natural47-4823,08%
Nutrición e actividade física4911,54%
AF e saúde50-5234,62%
Aprendizaxe motor53-5757,69%
Didáctica EF58-6034,62%
Avaliación do rendemento motor63-6423,08%
Instalacións6111,54%
Investigación 6211,54%
Concello6511,54%
Photo by cottonbro on Pexels.com

Algunas claves para el entrenamiento de la fuerza en deporte y salud

Concepto de fuerza

Junto a la resistencia y a la flexibilidad, la fuerza se considera como uno de los principales componentes de la condición física o factores de rendimiento físico en humanos.

La fuerza es una capacidad física muy dependiente de la función del sistema neuromuscular y, como síntesis de las múltiples definiciones mencionadas en la literatura científica y deportiva actual, se entiende como la capacidad funcional del aparato locomotor y sistema nervioso para producir patrones de movimiento repetidos, rápidos y coordinados que implican superar, sostener y/o amortiguar resistencias externas de diferente magnitud, dirección y sentido.

Objetivos del entrenamiento de fuerza

El objetivo principal del entrenamiento de fuerza es el desarrollo de la fuerza en sus diferentes manifestaciones, en una proporción adecuada conforme los requisitos motores específicos de la modalidad deportiva en cuestión y según el momento del ciclo de preparación en el que se encuentre el o la deportista.

Manifestaciones de la fuerza

En una clasificación clásica y sencilla propuesta por el biomecánico Vladimir Zatsziorski (1990) se identifica a la fuerza o carga máxima, a la fuerza-velocidad o potencia muscular y a la fuerza resistencia o resistencia muscular como las manifestaciones o subtipos fundamentales que configuran la fuerza como componente básico de condición física.

La fuerza o carga máxima se relaciona con la máxima resistencia que un individuo puede desplazar, sostener o amortiguar en un único ciclo de movimiento. En este sentido la halterofilia para todos sus movimientos se puede considerar como un ejemplo claro de esta manifestación.

En el caso de la fuerza-velocidad o potencia muscular el criterio de rendimiento se aplica, no solo a la intensidad de la carga que se mueve sino, a la máxima velocidad que se puede imprimir para una carga determinada, tanto para los movimientos de carácter acíclico (p.e. lanzamiento de disco) así como los movimientos cíclicos (p.e. sprint 100 m). La fuerza explosiva o la capacidad de generar una velocidad de contracción máxima o casi máxima en cada movimiento además de la capacidad de aprovechamiento de la energía elástica y reactiva, que se produce con los movimientos que requieren elongación rápida y previa a la contracción muscular (contracción pliométrica), son los subtipos de fuerza principales relacionadas con esta segunda manifestación.

La capacidad de generar una potencia media máxima para un tiempo de esfuerzo determinado se relaciona con la fuerza – resistencia o resistencia muscular. Desde esfuerzos predominantemente anaeróbicos (p.e 100 m lisos), esfuerzos mixtos aeróbico – anaeróbico (p.e remo) hasta los esfuerzos de larga duración (p.e. maratón), todos ellos requieren entrenamiento de la resistencia muscular con un ajuste de las cargas según los tiempos de esfuerzo y la musculatura activa implicada en el desarrollo de la competición.

Algunas claves para aplicar en el entrenamiento de la fuerza

El entrenamiento de la fuerza máxima requiere sobrecargas y para los ejercicios seleccionados se recomienda el manejo de cargas máximas o casi máximas (1 – 5 RM) ejecutadas entre el 80 % – 100 % de las repeticiones máximas posibles. Entre las series de ejercicios se debe dedicar un tiempo de descanso amplio que permita afrontar la serie siguiente (3- 5 series) con una fatiga mínima. Por esta misma razón el volumen de trabajo deberá ser contenido para favorecer la realización de la máxima cantidad de trabajo posible y en los rangos óptimos de intensidad establecidos para el desarrollo de esta capacidad. Para el entrenamiento de fuerza máxima son preferibles el manejo de ejercicios globales y resulta indispensable un trabajo previo para consolidar una técnica excelente y producir las adaptaciones mínimas de las estructuras clave del aparato locomotor.

Cargas entre un rango de 6 – 20 RM ejecutadas al 80 % – 100 % de las repeticiones máximas posibles, se consideran el nivel óptimo de carga para el desarrollo de la fuerza – resistencia o resistencia muscular. El descanso entre los ejercicio debe ser mínima y el volumen total de trabajo, incluyendo los tiempos de recuperación, se sitúa entre 20 minutos y 40 minutos, cantidad que parece más que suficiente según los resultados de investigación más recientes. Los ejercicios, tanto generales (globales y analíticos), especiales como específicos, se pueden organizar en circuitos (8 – 12 ejercicios y 2-4 series), subcircuitos (3 – 6 ejercicios y 2 – 4 series) o trabajo en superseries ( 3 – 5 series). Hay que tener muy en cuenta que el entrenamiento de fuerza – resistencia puede llegar a generar niveles muy altos de fatiga por lo que se recomienda no superar las 3 sesiones por semana y ordenarlas de forma alterna con un mínimo de 48 h entre ellas para favorecer la recuperación.

En el entrenamiento de la fuerza – velocidad o potencia muscular se considera la velocidad de movimiento como el criterio clave y de referencia para la ejecución óptima de los ejercicios que se proponen en su estrategia de desarrollo. En este sentido tanto para los ejercicios con sobrecarga (p.e. pesas, poleas) como para los ejercicios sin sobrecarga (p.e multisaltos, autocarga) resulta indispensable que la realización de cada movimiento se produzca de forma eficiente (con buena técnica) y a una velocidad de ejecución máxima o casi máxima. Por ello la cantidad de repeticiones y series a realizar deben estar lo más controlada posible y ajustarse en todo momento al requisito fundamental: potencia máxima o casi máxima en la ejecución. Al igual que para el desarrollo de la fuerza máxima, el volumen total de carga también deberá ser moderado para evitar que la fatiga acumulada pueda interferir, tanto en la técnica como en la velocidad de ejecución. Además los tiempos de descanso entre series también deben tender a ser altos y suficientes para poder abordar cada repetición con un estado de fatiga mínimo y poder asegurar de este modo una ejecución con un nivel de carga igual o muy próximo a la potencia máxima. Los ejercicios generales, especiales y específicos que se emplean para la mejora de esta capacidad de fuerza pueden requerir sobrecargas o no y, a diferencia del entrenamiento de la resistencia muscular, pueden realizarse dentro de una misma sesión y previamente al contenido técnico – táctico de la misma.

Conclusiones

El entrenamiento de la fuerza está considerado como un componente fundamental del entrenamiento físico, tanto en contexto deportivo como para el mantenimiento de un buen estado de salud general. Las investigaciones más recientes determinan que un correcto entrenamiento de fuerza, bien calibrado y ajustado a las características individuales de cada sujeto (edad, sexo, salud, condición física,…), resulta determinante para la mejora de la condición física general, rendimiento en el deporte así como el mantenimiento de un buen estado de salud que determina una adecuada calidad de vida en todas las edades.

Factores clave para el aprendizaje de una carrera de velocidad eficiente

La carrera de velocidad es uno de los patrones motores básicos que se requiere, no solo en eventos atléticos de corta duración, sino también para el rendimiento óptimo en múltiples deportes, especialmente en deportes de equipo y en su faceta particular del movimiento que se produce en el juego sin balón.

A partir de un análisis biomecánico cualitativo, con la observación de la ejecución motriz de sprinters, hombres y mujeres, de nivel internacional además de identificar las dos fases principales en este movimiento, fase de apoyo y fase de vuelo, se destacan los siguientes factores clave que se deben asocian al alto rendimiento para este tipo de habilidad motriz básica:

> En todas las fases del movimiento, fase de apoyo y fase de vuelo, el tronco se mantiene ligeramente inclinado hacia adelante para favorecer el componente horizontal del vector desplazamiento al mantener la posición del centro de gravedad del cuerpo por delante del pie de apoyo . En momentos de aceleración esa inclinación del tronco es mayor que en los momentos de mantenimiento de una velocidad máxima o casi máxima en la que la inclinación del tronco aparece ahí menos pronunciada.

>En todas las fases del movimiento la musculatura menos activa del tronco, brazos, cuello y cabeza se mantiene con la mayor relajación posible para ahorrar energía y favorecer la máxima producción de potencia y velocidad en el desplazamiento.

>En todas las fases se producen un movimiento alternado de adelante – atrás de los brazos, sincronizado con el movimiento de las piernas y manteniéndose próximos al tronco con una flexión aproximada en la articulación del codo de 90º.

>El contacto del pie al inicio de la fase de apoyo debe producirse con una distancia mínima a la proyección vertical del centro de gravedad del cuerpo para de esta forma minimizar la magnitud de las fuerzas que se oponen al movimiento y que se generan en esta subfase de contacto en cada zancada.

> En ningún momento de la fase de apoyo el talón del pie correspondiente entra en contacto con el suelo, de este modo se garantiza una adecuada amortiguación del cuerpo que minimiza el riesgo de lesión, además de favorecer una mayor producción de potencia efectiva en la fase de impulso al activar los elementos elásticos y reactivos de la musculatura extensora de la articulación del tobillo.

>En la subfase de impulso y con el objeto de generar la máxima potencia posible para el avance del cuerpo se produce una extensión completa y coordinada de las articulaciones de tobillo, rodilla y cadera a partir de contracciones musculares de carácter pliométrico (contracción concéntrica suplementada con la activación de elementos elásticos y reactivos de las fibras musculares como consecuencia de estiramiento previo y de corta duración).

>En la subfase de impulso la pierna libre se mantiene en flexión y se eleva hasta aproximar la rodilla al plano horizontal que contiene la articulación coxofemoral.

>En la fase de vuelo la pierna de apoyo después del impulso deja de contactar con el suelo y se convierte en pierna libre moviéndose desde atrás hacia adelante con la máxima flexión de la rodilla para favorecer una transformación rápida y económica.

>Durante la fase de vuelo la pierna libre se prepara para convertirse en pierna de apoyo realizando una extensión incompleta de la rodilla a medida que esta se adelanta y con el objeto de que el apoyo se produzca próximo a la proyección del centro de gravedad y sin que el talón del pie contacte en ningún momento con el suelo.

>Todos los movimientos que componen el patrón motor de la carrera de velocidad deben realizarse manteniendo en todo momento un equilibrio óptimo entre los dos factores fundamentales que determinan la velocidad del desplazamiento: la amplitud y la frecuencia de zancada.

Conocer los factores clave de ejecución para la carrera de velocidad resulta indispensable para el desarrollo técnico y una evaluación más precisa de la ejecución de esta habilidad motriz básica en cualquier entorno de práctica y entrenamiento, ya sean educativos o de rendimiento deportivo.

¿ De que se ocupa la biomecánica deportiva?

La biomecánica es una ciencia interdisciplinar que aplica el conocimiento de la mecánica clásica (Newton, Leibniz, Lagrange, Euler y otros) para explicar la fisiología de los seres vivos. En contexto médico es considerada como una rama de la biofísica.

Es una disciplina que se desarrolla en la 2ª mitad del siglo XX a partir de algunos estudios sobre la función cardiovascular (Fung, 1966).

En este sentido la biomecánica deportiva es una subcategoría de la biomecánica humana, que se encarga de analizar los movimientos específicos que se producen en el deporte a partir de los fundamentos de la mecánica clásica.

La palabra mecánica tiene origen griego y etimologicamente significa “máquina” o “herramienta” y es aquella parte de la física que estudia el movimiento (cinemática) y las causas (fuerzas) que lo producen (estática y dinámica).

La mecánica clásica o mecánica de Newton es muy precisa cuando se estudian objetos pequeños y velocidades inferiores a la velocidad de la luz, tal y como es el caso de los movimientos que produce el cuerpo humano en contexto deportivo.

Los objetivos principales de la biomecánica deportiva se pueden concretar en los siguientes:

  • Aumentar el rendimiento deportivo con la mejora de la eficiencia de los movimientos que requiere la competición deportiva.
  • Optimizar los procesos de entrenamiento con el conocimiento detallado del componente físico de la carga de competición.
  • Prevenir determinadas lesiones que afectan al aparato locomotor con la definición de movimientos eficientes y seguros.
  • Ayudar en el diseño de materiales y de equipamiento para la mejora de la seguridad y del rendimiento deportivo.

McGinnis, P. M. (2013). Biomechanics of sport and exercise. Human Kinetics.

Zatsiorsky, V. (Ed.). (2008). Biomechanics in sport: performance enhancement and injury prevention (Vol. 9). John Wiley & Sons.

Apuntes sobre fundamentos del entrenamiento en remo

El remo está considerado uno de los deportes olímpicos por excelencia, ya que desde un primer momento está modalidad deportiva, junto con el atletismo y la gimnasia, formaron parte de los primeros programas de los JJOO de la era moderna.

A principios del siglo XIX se organizan las primeras regatas de remo en Inglaterra, destacando la Henley Royal Regatta en 1839 y la popular Oxford – Cambrigde que enfrenta a las dos universidades desde 1829.

Se puede afirmar que el remo es un deporte con una gran implantación en todo el mundo, con 153 países formando la federación internacional de remo (FISA). Actualmente América del norte, Europa y Oceanía son los continentes con mayor tradición y mayor nivel deportivo en el remo mundial.

El remo olímpico se incluye en la categoría de deportes de agua, cíclicos y de fuerza-resistencia y en que las regatas se realizan recorriendo 2000 m en aguas tranquilas y campo balizado con seis calles. Las categorías de participación se establecen según sexo, peso y clase de bote, estas últimas determinadas según número de remeros y remos que maneja cada uno de ellos: 1 remo (remo en punta) o 2 remos (remo en scull).

Los remeros-as presentan una estructura corporal en la que predominan los componentes ectomórfico (extremidades largas con predominio de la estatura frente a peso corporal) y mesomórfico (elevado peso magro y bajo peso graso) , junto con una estatura por encima del valor promedio de población normal.

En las regatas de 2000 m entre el 70 – 80 % de la energía es aportada por el metabolismo aeróbico (VO2 max  de 5,5-6,5 l/min en hombres y 4-4,5 l/min en mujeres junto con un un VO2 max asociado a [lactato] de 4 mlmol.l-1 = 75 – 85 % del VO2 max) y el 20 -30 % de la energía se produce a partir del metabolismo anaeróbico (valores de lactato postesfuerzo entre 12 y 21 mlmol.l-1).

En definitiva el remo es una de las actividades deportivas con mayor exigencia física y fisiológica del panorama deportivo actual y por consiguiente una correcta aplicación de los métodos de entrenamiento resulta indispensable para alcanzar un alto nivel de rendimiento y la protección de la salud física y mental de los remeros-as.

Pongo a vuestra disposición unos apuntes que recogen los aspectos clave más destacados del entrenamiento en remo desde la evidencia científica en la biomecánica y fisiología del ejercicio.

Como siempre espero que os resulten de interés y lo podáis aplicar en vuestra práctica diaria como entrenadores-as.

Apuntes sobre fundamentos del entrenamiento en remo (Silva-Alonso, 2019)

Apuntes sobre la fisiología del ejercicio

pexel.com

La fisiología del ejercicio es una de las áreas de conocimiento indispensable para fundamentar la práctica e intervenciones en el ámbito del entrenamiento deportivo y del entrenamiento para la salud.

Los primeros trabajos sobre fisiología del ejercicio datan de principios del siglo XX con estudios sobre la fisiología del sistema de aporte de oxígeno y metabolismo anaeróbico que incluso tuvieron el reconocimiento internacional con los premios Nobel de Krogh (1920), Hill (1922) y Meyerhof (1922).

La fisiología del ejercicio o también llamada del esfuerzo tiene como objeto de estudio el conocimiento de los cambios puntuales o crónicos que produce el ejercicio físico sobre los sistemas funcionales del cuerpo humano y sus efectos sobre el rendimiento físico y la salud.

Pongo a vuestra disposición unos apuntes básicos y esquemáticos que os puedan resultar útiles para introduciros en esta apasionante área de conocimiento tan importante para los profesionales de la actividad física y el deporte.

En ellos encontrareis información sobre los antecedentes, los objetivos, nutrición, metabolismo energético, adaptaciones, aplicaciones prácticas al entrenamiento y cual es la evidencia entre ejercicio físico y enfermedad crónica.

Estos apuntes son de acceso libre y podeis descargarlos en este enlace Apuntes sobre fisiología del ejercicio.

Espero que os resulten útiles.