Cómo debe trabajar un preparador/a físico en contexto deportivo

Soy de los que siempre ha pensado que la figura del preparador físico/a (PF) es la de un profesional especializado en entrenamiento para la mejora del rendimiento en el deporte, de la salud general en todas las etapas de la vida y de la recuperación de la condición física que se requiere como consecuencia del padecimiento de una enfermedad o de una lesión.

Con este enfoque amplio y por supuesto desde mi humilde perspectiva, un buen PF debería ser siempre capaz de desarrollar su trabajo al margen del objetivo general del mismo. Es decir, no creo demasiado en los PF excesivamente especializados en deportes concretos, en edades determinadas y en tipos particulares de entrenamiento.

Desde mi experiencia me atrevo a recomendar a los futuros PF que no se limiten y amplíen al máximo su formación y desarrollo profesional de tal forma que puedan realizar su trabajo con eficacia y seguridad, sea cual sea la actividad deportiva, actividad física o enfermedad o lesión a recuperar.

En el siguiente mapa conceptual se resume de forma simplificada y desde una aportación personal los pasos que puede seguir un PF en su trabajo cuando lo aplica en un contexto de deporte de competición.

Como siempre espero que pueda ser de vuestro interés y de utilidad en vuestra práctica cotidiana.

OPOSICIONES PARA EDUCACIÓN FÍSICA EN SECUNDARIA: TEMA 17 ACTUALIZADO

Con el desarrollo del Tema17 – Factores que intervienen en el trabajo de desarrollo de la condición física: intensidad y volumen; recuperación, duración y repeticiones se pretende revisar el conocimiento científico-técnico existente sobre la carga de entrenamiento y la necesidad de su manipulación y control para la optimización del entrenamiento o ejercicio físico y la prevención de patologías crónicas asociadas al sedentarismo.

El conocimiento que aporta al docente este tema le puede permitir la programación segura y eficaz de actividades físicas para los estudiantes de 12-18 años con el objetivo principal de mejorar su salud en general, muy especialmente en la prevención y tratamiento del sobrepeso y obesidad.

Photo by Li Sun on Pexels.com

Algunas claves para el entrenamiento de la fuerza en deporte y salud

Concepto de fuerza

Junto a la resistencia y a la flexibilidad, la fuerza se considera como uno de los principales componentes de la condición física o factores de rendimiento físico en humanos.

La fuerza es una capacidad física muy dependiente de la función del sistema neuromuscular y, como síntesis de las múltiples definiciones mencionadas en la literatura científica y deportiva actual, se entiende como la capacidad funcional del aparato locomotor y sistema nervioso para producir patrones de movimiento repetidos, rápidos y coordinados que implican superar, sostener y/o amortiguar resistencias externas de diferente magnitud, dirección y sentido.

Objetivos del entrenamiento de fuerza

El objetivo principal del entrenamiento de fuerza es el desarrollo de la fuerza en sus diferentes manifestaciones, en una proporción adecuada conforme los requisitos motores específicos de la modalidad deportiva en cuestión y según el momento del ciclo de preparación en el que se encuentre el o la deportista.

Manifestaciones de la fuerza

En una clasificación clásica y sencilla propuesta por el biomecánico Vladimir Zatsziorski (1990) se identifica a la fuerza o carga máxima, a la fuerza-velocidad o potencia muscular y a la fuerza resistencia o resistencia muscular como las manifestaciones o subtipos fundamentales que configuran la fuerza como componente básico de condición física.

La fuerza o carga máxima se relaciona con la máxima resistencia que un individuo puede desplazar, sostener o amortiguar en un único ciclo de movimiento. En este sentido la halterofilia para todos sus movimientos se puede considerar como un ejemplo claro de esta manifestación.

En el caso de la fuerza-velocidad o potencia muscular el criterio de rendimiento se aplica, no solo a la intensidad de la carga que se mueve sino, a la máxima velocidad que se puede imprimir para una carga determinada, tanto para los movimientos de carácter acíclico (p.e. lanzamiento de disco) así como los movimientos cíclicos (p.e. sprint 100 m). La fuerza explosiva o la capacidad de generar una velocidad de contracción máxima o casi máxima en cada movimiento además de la capacidad de aprovechamiento de la energía elástica y reactiva, que se produce con los movimientos que requieren elongación rápida y previa a la contracción muscular (contracción pliométrica), son los subtipos de fuerza principales relacionadas con esta segunda manifestación.

La capacidad de generar una potencia media máxima para un tiempo de esfuerzo determinado se relaciona con la fuerza – resistencia o resistencia muscular. Desde esfuerzos predominantemente anaeróbicos (p.e 100 m lisos), esfuerzos mixtos aeróbico – anaeróbico (p.e remo) hasta los esfuerzos de larga duración (p.e. maratón), todos ellos requieren entrenamiento de la resistencia muscular con un ajuste de las cargas según los tiempos de esfuerzo y la musculatura activa implicada en el desarrollo de la competición.

Algunas claves para aplicar en el entrenamiento de la fuerza

El entrenamiento de la fuerza máxima requiere sobrecargas y para los ejercicios seleccionados se recomienda el manejo de cargas máximas o casi máximas (1 – 5 RM) ejecutadas entre el 80 % – 100 % de las repeticiones máximas posibles. Entre las series de ejercicios se debe dedicar un tiempo de descanso amplio que permita afrontar la serie siguiente (3- 5 series) con una fatiga mínima. Por esta misma razón el volumen de trabajo deberá ser contenido para favorecer la realización de la máxima cantidad de trabajo posible y en los rangos óptimos de intensidad establecidos para el desarrollo de esta capacidad. Para el entrenamiento de fuerza máxima son preferibles el manejo de ejercicios globales y resulta indispensable un trabajo previo para consolidar una técnica excelente y producir las adaptaciones mínimas de las estructuras clave del aparato locomotor.

Cargas entre un rango de 6 – 20 RM ejecutadas al 80 % – 100 % de las repeticiones máximas posibles, se consideran el nivel óptimo de carga para el desarrollo de la fuerza – resistencia o resistencia muscular. El descanso entre los ejercicio debe ser mínima y el volumen total de trabajo, incluyendo los tiempos de recuperación, se sitúa entre 20 minutos y 40 minutos, cantidad que parece más que suficiente según los resultados de investigación más recientes. Los ejercicios, tanto generales (globales y analíticos), especiales como específicos, se pueden organizar en circuitos (8 – 12 ejercicios y 2-4 series), subcircuitos (3 – 6 ejercicios y 2 – 4 series) o trabajo en superseries ( 3 – 5 series). Hay que tener muy en cuenta que el entrenamiento de fuerza – resistencia puede llegar a generar niveles muy altos de fatiga por lo que se recomienda no superar las 3 sesiones por semana y ordenarlas de forma alterna con un mínimo de 48 h entre ellas para favorecer la recuperación.

En el entrenamiento de la fuerza – velocidad o potencia muscular se considera la velocidad de movimiento como el criterio clave y de referencia para la ejecución óptima de los ejercicios que se proponen en su estrategia de desarrollo. En este sentido tanto para los ejercicios con sobrecarga (p.e. pesas, poleas) como para los ejercicios sin sobrecarga (p.e multisaltos, autocarga) resulta indispensable que la realización de cada movimiento se produzca de forma eficiente (con buena técnica) y a una velocidad de ejecución máxima o casi máxima. Por ello la cantidad de repeticiones y series a realizar deben estar lo más controlada posible y ajustarse en todo momento al requisito fundamental: potencia máxima o casi máxima en la ejecución. Al igual que para el desarrollo de la fuerza máxima, el volumen total de carga también deberá ser moderado para evitar que la fatiga acumulada pueda interferir, tanto en la técnica como en la velocidad de ejecución. Además los tiempos de descanso entre series también deben tender a ser altos y suficientes para poder abordar cada repetición con un estado de fatiga mínimo y poder asegurar de este modo una ejecución con un nivel de carga igual o muy próximo a la potencia máxima. Los ejercicios generales, especiales y específicos que se emplean para la mejora de esta capacidad de fuerza pueden requerir sobrecargas o no y, a diferencia del entrenamiento de la resistencia muscular, pueden realizarse dentro de una misma sesión y previamente al contenido técnico – táctico de la misma.

Conclusiones

El entrenamiento de la fuerza está considerado como un componente fundamental del entrenamiento físico, tanto en contexto deportivo como para el mantenimiento de un buen estado de salud general. Las investigaciones más recientes determinan que un correcto entrenamiento de fuerza, bien calibrado y ajustado a las características individuales de cada sujeto (edad, sexo, salud, condición física,…), resulta determinante para la mejora de la condición física general, rendimiento en el deporte así como el mantenimiento de un buen estado de salud que determina una adecuada calidad de vida en todas las edades.

Factores clave para el aprendizaje de una carrera de velocidad eficiente

La carrera de velocidad es uno de los patrones motores básicos que se requiere, no solo en eventos atléticos de corta duración, sino también para el rendimiento óptimo en múltiples deportes, especialmente en deportes de equipo y en su faceta particular del movimiento que se produce en el juego sin balón.

A partir de un análisis biomecánico cualitativo, con la observación de la ejecución motriz de sprinters, hombres y mujeres, de nivel internacional además de identificar las dos fases principales en este movimiento, fase de apoyo y fase de vuelo, se destacan los siguientes factores clave que se deben asocian al alto rendimiento para este tipo de habilidad motriz básica:

> En todas las fases del movimiento, fase de apoyo y fase de vuelo, el tronco se mantiene ligeramente inclinado hacia adelante para favorecer el componente horizontal del vector desplazamiento al mantener la posición del centro de gravedad del cuerpo por delante del pie de apoyo . En momentos de aceleración esa inclinación del tronco es mayor que en los momentos de mantenimiento de una velocidad máxima o casi máxima en la que la inclinación del tronco aparece ahí menos pronunciada.

>En todas las fases del movimiento la musculatura menos activa del tronco, brazos, cuello y cabeza se mantiene con la mayor relajación posible para ahorrar energía y favorecer la máxima producción de potencia y velocidad en el desplazamiento.

>En todas las fases se producen un movimiento alternado de adelante – atrás de los brazos, sincronizado con el movimiento de las piernas y manteniéndose próximos al tronco con una flexión aproximada en la articulación del codo de 90º.

>El contacto del pie al inicio de la fase de apoyo debe producirse con una distancia mínima a la proyección vertical del centro de gravedad del cuerpo para de esta forma minimizar la magnitud de las fuerzas que se oponen al movimiento y que se generan en esta subfase de contacto en cada zancada.

> En ningún momento de la fase de apoyo el talón del pie correspondiente entra en contacto con el suelo, de este modo se garantiza una adecuada amortiguación del cuerpo que minimiza el riesgo de lesión, además de favorecer una mayor producción de potencia efectiva en la fase de impulso al activar los elementos elásticos y reactivos de la musculatura extensora de la articulación del tobillo.

>En la subfase de impulso y con el objeto de generar la máxima potencia posible para el avance del cuerpo se produce una extensión completa y coordinada de las articulaciones de tobillo, rodilla y cadera a partir de contracciones musculares de carácter pliométrico (contracción concéntrica suplementada con la activación de elementos elásticos y reactivos de las fibras musculares como consecuencia de estiramiento previo y de corta duración).

>En la subfase de impulso la pierna libre se mantiene en flexión y se eleva hasta aproximar la rodilla al plano horizontal que contiene la articulación coxofemoral.

>En la fase de vuelo la pierna de apoyo después del impulso deja de contactar con el suelo y se convierte en pierna libre moviéndose desde atrás hacia adelante con la máxima flexión de la rodilla para favorecer una transformación rápida y económica.

>Durante la fase de vuelo la pierna libre se prepara para convertirse en pierna de apoyo realizando una extensión incompleta de la rodilla a medida que esta se adelanta y con el objeto de que el apoyo se produzca próximo a la proyección del centro de gravedad y sin que el talón del pie contacte en ningún momento con el suelo.

>Todos los movimientos que componen el patrón motor de la carrera de velocidad deben realizarse manteniendo en todo momento un equilibrio óptimo entre los dos factores fundamentales que determinan la velocidad del desplazamiento: la amplitud y la frecuencia de zancada.

Conocer los factores clave de ejecución para la carrera de velocidad resulta indispensable para el desarrollo técnico y una evaluación más precisa de la ejecución de esta habilidad motriz básica en cualquier entorno de práctica y entrenamiento, ya sean educativos o de rendimiento deportivo.

Apuntes sobre fundamentos del entrenamiento en remo

El remo está considerado uno de los deportes olímpicos por excelencia, ya que desde un primer momento está modalidad deportiva, junto con el atletismo y la gimnasia, formaron parte de los primeros programas de los JJOO de la era moderna.

A principios del siglo XIX se organizan las primeras regatas de remo en Inglaterra, destacando la Henley Royal Regatta en 1839 y la popular Oxford – Cambrigde que enfrenta a las dos universidades desde 1829.

Se puede afirmar que el remo es un deporte con una gran implantación en todo el mundo, con 153 países formando la federación internacional de remo (FISA). Actualmente América del norte, Europa y Oceanía son los continentes con mayor tradición y mayor nivel deportivo en el remo mundial.

El remo olímpico se incluye en la categoría de deportes de agua, cíclicos y de fuerza-resistencia y en que las regatas se realizan recorriendo 2000 m en aguas tranquilas y campo balizado con seis calles. Las categorías de participación se establecen según sexo, peso y clase de bote, estas últimas determinadas según número de remeros y remos que maneja cada uno de ellos: 1 remo (remo en punta) o 2 remos (remo en scull).

Los remeros-as presentan una estructura corporal en la que predominan los componentes ectomórfico (extremidades largas con predominio de la estatura frente a peso corporal) y mesomórfico (elevado peso magro y bajo peso graso) , junto con una estatura por encima del valor promedio de población normal.

En las regatas de 2000 m entre el 70 – 80 % de la energía es aportada por el metabolismo aeróbico (VO2 max  de 5,5-6,5 l/min en hombres y 4-4,5 l/min en mujeres junto con un un VO2 max asociado a [lactato] de 4 mlmol.l-1 = 75 – 85 % del VO2 max) y el 20 -30 % de la energía se produce a partir del metabolismo anaeróbico (valores de lactato postesfuerzo entre 12 y 21 mlmol.l-1).

En definitiva el remo es una de las actividades deportivas con mayor exigencia física y fisiológica del panorama deportivo actual y por consiguiente una correcta aplicación de los métodos de entrenamiento resulta indispensable para alcanzar un alto nivel de rendimiento y la protección de la salud física y mental de los remeros-as.

Pongo a vuestra disposición unos apuntes que recogen los aspectos clave más destacados del entrenamiento en remo desde la evidencia científica en la biomecánica y fisiología del ejercicio.

Como siempre espero que os resulten de interés y lo podáis aplicar en vuestra práctica diaria como entrenadores-as.

Apuntes sobre fundamentos del entrenamiento en remo (Silva-Alonso, 2019)

Apuntes sobre fundamentos e introducción al entrenamiento de jugadores-as y equipos de baloncesto

Photo by Pixabay on Pexels.com

El baloncesto es actualmente uno de los deportes más populares y practicados del mundo.

Es un deporte de equipo que se juega con balón y se desarrolla en una pista cubierta de 28 x 15 m en el que 5 jugadores-as interaccionan contra otros 5 alternando fases ofensivas y fases defensivas durante un tiempo de 40 o 48 minutos repartido en cuatro periodos de 10 o 12 minutos de tiempo efectivo, según tipo de el reglamento que regule la competición: FIBA, NBA, WNBA o NCAA. 

El balón de juego se maneja con las manos y el objetivo de un equipo es conseguir anotar más puntos que el equipo adversario. Los puntos de 1, 2 o 3 puntos que se pueden sumar durante un partido se consiguen cuando un jugador-a introduce el balón en un aro metálico con red situado en cada extremo de la pista, a una altura de 3,05 m y su valor depende de la distancia de lanzamiento, si se produce en acción durante el juego o como acción de tiro libre.

Desde el punto de vista motor el baloncesto es un juego complejo y dinámico que exige a los jugadores/as una ejecución veloz y eficiente de habilidades motrices básicas y específicas con toma de decisiones constantes que se aplican tanto de forma individual como colectiva (Delextrat et al, 2015). El esfuerzo que realizan los jugadores-as en competición se caracteriza por su intermitencia y variabilidad, tanto en duración como en intensidad de esfuerzo (Aoki et al, 2016).


Para todas las personas interesadas en el tema pongo a vuestra disposición los apuntes del bloque de contenidos de baloncesto (48 páginas) correspondiente a la materia Fundamentos Didácticos de los deportes colectivos que se imparte en la Universidad de Vigo.

Índice de los apuntes:

INTRODUCCIÓN

1.1 Descripción de la modalidad.

1.2 Origen y evolución del juego.

1.3 Contextos de práctica.

1.4 Reglas básicas FIBA y NBA.

1.5 Representación gráfica de acciones de juego: símbolos y software específico.

DEMANDAS BIOMECÁNICAS Y FISIOLÓGICAS

2.1 Tiempo, intensidad y densidad de esfuerzo.

2.2 Perfil fisiológico del jugador/a: capacidad aeróbica, capacidad anaeróbica, potencia muscular y coordinación neuromuscular.

FUNDAMENTOS TÉCNICOS

3.1 Concepto de técnica.

3.2 Acciones técnicas del jugador/a en fase ofensiva y fase defensiva.

3.3 Métodos para la enseñanza-aprendizaje de los fundamentos técnicos.

FUNDAMENTOS TÁCTICOS

4.1 Concepto de táctica y estrategia.

4.2  Principios básicos de táctica individual.

4.3 Principios básicos de táctica de equipo.

4.4 Métodos para la enseñanza-aprendizaje de los fundamentos tácticos.

ENTRENAMIENTO DE JUGADORES-AS Y EQUIPOS

5.1 Objetivos y métodos de entrenamiento.

5.2 Evaluación del estado de forma y de la condición física.

5.3 Métodos para el control de la carga y de la recuperación.

5.4 Periodización del entrenamiento.

5.5 Lesiones más frecuentes: prevalencia, factores de riesgo y recuperación.

ANÁLISIS DEL RENDIMIENTO

6.1 Objetivos y métodos de análisis.

6.2  Indicadores estadísticos de rendimiento.

6.3 Elaboración, comunicación y presentación de un informe de jugador/a y/o equipo adversario.

6.4 Diseño, preparación y ejecución de un plan de partido.

¿Son diferentes las lesiones en corredores según el sexo?

Photo by Pixabay on Pexels.com

Correr es uno de los deportes o ejercicio físico más practicados en el mundo. Se puede considerar el deporte más popular por excelencia debido a su relativa facilidad para ser practicado y su bajo coste económico.

Aunque se considera que correr es una actividad sana que repercute de forma beneficiosa en la salud general se observa que su tasa de lesiones es ciertamente elevado, muy probablemente debido a desajustes en la carga de entrenamiento y la escasa aproximación de la misma a factores biomecánicos individuales.

Diferentes estudios sugieren el sexo como factor de riesgo para determinados patrones específicos de lesiones en general y en particular para la actividad reconocida como carrera a pie. Una revisión reciente sobre este tema subraya en sus resultados varios descubrimientos de interés:

a) No hay diferencia entre hombres y mujeres en la tasa de lesiones: hombres se lesionan con una prevalencia de 20,4 cada 100 y las mujeres con un valor de 20,8 cada 100.

b) Para distancias de 10 km o menos las corredoras muestran un mayor riesgo de lesiones que los corredores.

c) Las corredoras muestran el doble de riesgo que los corredores en sufrir fracturas por estrés, especialmente en edades más jóvenes y probablemente debido a que estas se ven afectadas de forma singular de una baja disponibilidad de energía, alteración menstrual y baja densidad ósea.

d) Los corredores tienen el doble de riesgo de padecer una tendinopatía de Aquiles que las corredoras. La causa no parece clara y se especula que el nivel de carga crónica, mayor en hombres, pueda ser causa de esta circunstancia además de las diferencias endocrinas entre hombres y mujeres en relación a la producción de estrógenos, hormona que favorece la síntesis del colágeno y que influye en capacidad de reparación de la estructura del tendón dañada por los microimpactos repetidos durante la carrera.

Hollander, K., Rahlf, A. L., Wilke, J., Edler, C., Steib, S., Junge, A., & Zech, A (2021). Sex-Specific Differences in Running Injuries: A Systematic Review with Meta-Analysis and Meta-Regression. Sports Medicine, 1-29.

Interacción de los sistemas producción de energía durante la realización de esfuerzos máximos

Los primeros estudios para representar la interacción y contribución relativa de los 3 procesos al la producción de energía en esfuerzos máximos datan de las décadas de 1960 y 1970.

A nivel bioquímico la energía que precisa la fibra muscular para producir acortamiento o tensión muscular, imprescindible en cualquier movimiento humano básico o específico, se obtiene fundamentalmente por medio de la descomposición del ATP intracelular.

Esta “ruptura” del ATP está asociada a una reacción exotérmica que produce ADP, Fósforo Inorgánico y la energía necesaria fundamentalmente para la contracción muscular, la transmisión del impulso nervioso, las reacciones de biosíntesis (anabolismo) y el transporte activo celular.

Se puede afirmar que el ATP es una fuente directa de energía, con un funcionamiento semejante al de una “batería recargable”.

Las reservas de ATP y  moléculas fosfágenas  están en las células en cantidad limitada y por eso el principal objetivo del metabolismo energético es mantener un nivel mínimo de estas reservas y resintetizar el ATP y PCr deficitario a la mayor velocidad posible.

Las reservas de ATP se estiman en 5 mlM/Kg de músculo y las reservas de PCr son de 15 – 20 mlM/Kg de músculo (4 o 5 veces más que las reservas de ATP).

La ingestión de alimentos es la fuente que proporciona al organismo las biomoléculas esenciales para obtener la energía necesaria en la resíntesis del ATP. Estos nutrientes o principios inmediatos son fundamentalmente los hidratos de carbono, las grasas, las proteínas, las vitaminas y los minerales. Por medio del metabolismo de la glucosa, ácidos grasos y, en ocasiones, los aminoácidos es cómo el organismo obtiene la energía necesaria para mantener sus funciones vitales.

Desde un punto de vista metabólico, la resíntesis del ATP se puede producir fundamentalmente a través de tres sistemas: Anaeróbico Aláctico, Anaeróbico Láctico y Aeróbico. Estos tres sistemas de resíntesis del ATP funcionan de forma integrada y tienen una inercia de puesta en acción variable en el tiempo (Heterocronismo).

El sistema anaeróbico aláctico produce energía como consecuencia de la descomposición de las reservas del ATP y PCr que ya existen en el músculo. Este sistema permite obtener la energía que precisan los esfuerzos breves y muy intensos (p.e un salto de longitud o un sprint de 100 m), tiene una potencia muy elevada ( 13 Cal/kg/seg ) pero capacidad muy limitada (aproximadamente 20 – 30 seg).

El sistema anaeróbico láctico o glucólisis obtiene la energía a partir de la degradación de la glucosa  que se produce en ausencia de oxígeno. Las reservas de glucógeno (“cadenas de glucosa”) en el músculo son variables, ya que están fuertemente condicionadas por el entrenamiento, especialmente de fuerza, y  de la dieta: 9 – 16 gr / kg de músculo ( 300 – 800 gr en todo el organismo). La reserva de glucógeno en el hígado es de aproximadamente 100 gr.En este sistema, las reacciones anaeróbicas tienen lugar en el sarcoplasma (citoplasma de la célula muscular) y se produce ácido láctico como subproducto y energía a partir de la degradación de la glucosa sin empleo de oxígeno. El sistema anaeróbico láctico es el que produce la energía necesaria para afrontar esfuerzos intensos y relativamente prolongados (p.e. una carrera de 400 m), tiene una potencia elevada ( 7 Cal/kg/seg ), pero también está limitada en su capacidad (aproximadamente 120 – 180 segundos). La capacidad anaeróbica láctica es variable y entrenable porque depende de la concentración de lactato en la fibra muscular y la capacidad del sujeto de tolerar niveles elevados de acidez intracelular.

La producción de lactato aumenta con la intensidad del ejercicio y una concentración de lactato elevada produce una disminución del pH intracelular. Un medio excesivamente ácido supone una inhibición en la actividad enzimática de la glucólisis, lo que provoca un descenso en la velocidad de contracción de la fibra muscular. Durante el esfuerzo, el lactato que se produce en la fibra muscular sale al torrente sanguíneo para ser eliminado/aclarado/oxidado. La eliminación del lactato se realiza fundamentalmente a través de tres procesos: Oxidación, Gluconeogénesis y Excreción.

Es importante destacar que aproximadamente un 80 % del lactato producido durante la glucólisis se oxida durante el ejercicio submáximo, fundamentalmente en el músculo esquelético, aunque corazón, hígado y riñón también oxidan el lactato, pero en una proporción cuantitativamente menor. Con el ejercicio submáximo prolongado la gluconeogénesis hepática se hace  más importante al disminuir los depósitos hepáticos de glucógeno. Con concentraciones de lactato por debajo de 5 – 6 mlM, las pérdidas a través de la orina son mínimas. Por encima de estas concentraciones, los valores ya son más importantes.

El sistema aeróbico de obtención de energía depende de la oxidación de grasas e hidratos de carbono (ácidos grasos y glucosa). En presencia suficiente de O2, la célula muscular es capaz de oxidar la glucosa o ácidos grasos libres y obtener un rendimiento energético relativamente elevado. La fase fundamental de este proceso aeróbico se realiza en las mitocondrias de la fibra muscular (Ciclo de Krebs y Cadena Respiratoria).

El VO2 máximo o Potencia Aeróbica máxima indica la capacidad máxima del sistema aeróbico de producir energía y en este sentido el sistema de aporte de oxígeno (SAO) es el sistema funcional que limita el VO2 máximo (sistema respiratorio + sistema cardiovascular + capacidad oxidativa de fibras musculares). El VO2 en reposo tiene un valor aproximado de 3,5 ml/kg/min y crece de forma lineal con la intensidad de esfuerzo. Al valor de un VO2 estable, en una intensidad de esfuerzo próximo a valores de frecuencia cardiaca máxima y RQ (cociente respiratorio) > 1,1, se denomina VO2 máximo. La Potencia Aeróbica Máxima o VO2 max es un valor variable de  carácter individual y modificable con el entrenamiento en un rango 5 – 20 % aproximadamente..

SISTEMAS PARA LA PRODUCCIÓN DE ENERGÍA
ANAERÓBICO ALÁCTICOANAERÓBICO LÁCTICOAERÓBICO
METABOLISMOReservas FosfágenasGlucólisisOxidación de Principios Inmediatos
NECESIDAD DE OXÍGENONo precisa oxígenoNo precisa oxígenoNecesita oxígeno
DÓNDE SE PRODUCESarcoplasmaSarcoplasmaMitocondria
POTENCIA QUE DESARROLLAMuy AltoAltoMedio
CAPACIDAD QUE DESARROLLAHasta 20 segEntre 20” y 180 “+ 3-5 minutos
INTENSIDAD DE ESFUERZO QUE PERMITEMuy AltaAltaMedio-Alta
DURACIÓN DEL ESFUERZO QUE PERMITEBreve y CortaMediaProlongada
RENDIMIENTO ENERGÉTICORendimiento Energético Muy AltoRendimiento Energético AltoRendimiento Energético Medio – Alto
LIMITACIONES O FATIGA DEL SISTEMAEl sistema pierde eficacia en poco tiempo debido al rápido agotamiento de las reservas de fosfágeno existentes.El sistema pierde eficacia en un tiempo relativamente corto debido a una acumulación  elevada de lactato.El sistema es muy eficaz porque permite la realización de esfuerzos muy prolongados con niveles de fatiga más tolerables.

Gastin, P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports medicine31(10), 725-741.

Tabla aportada por Gastin (2001) que resume la participación de los sistemas de producción de energía (%) en esfuerzos máximos de diferentes duración (segundos)

Demandas biomecánicas y fisiológicas del baloncesto de competición

En el ámbito del deporte de competición y previamente a cualquier tipo de planificación de entrenamiento es imprescindible que las personas responsables de su programación y supervisión conozcan con precisión cual va a ser la exigencia física y fisiológica que requiere la competición deportiva en esa modalidad.

En el caso del baloncesto y como datos fundamentales aportados por la evidencia científica a tener en cuenta y que determinan las demandas biomecánicas-carga externa de un partido destacan:

  1. Los patrones motores observados en el juego son amplios y variados. Saltos, carreras, pases, tiros a canasta, dribling, rebotes, bloqueos y desplazamientos de componente lateral constituyen las principales acciones motoras que realizan los jugadores durante el juego (Ben Abdelkrim et al., 2010b).
  2. Tanto para jugadores hombres como mujeres (Narazaki et al., 2009) el cambio de patrón motor durante un partido se produce de manera constante cada 1- 3 segundos (Scalan et alt., 2015).
  3. El tiempo de juego individual, el ritmo de partido y el modelo táctico son las variables más destacadas que determinan la distancia recorrida durante un partido. Tanto para jugadores hombres y mujeres la distancia por cada 40 minutos de juego oscila entre 5-6 km.
  4. El 65 % acciones  de juego tienen una duración t < 40 s.
  5. La duración en acciones de intensidad máxima oscila entre 2-5 s, predominando las acciones cercanas a los 2 s.
  6. En el carácter intermitente del juego predomina la actividad frente al descanso con una densidad de esfuerzo (tiempo de actividad/tiempo total) entre 0,5 y 0,8.
  7. Jugadores-as considerados de primera línea tienen un tiempo de juego promedio superior a 20-22 min/partido. Jugadores-as de segunda línea un tiempo de juego promedio entre 10-20 min/partido y jugadores-as de desarrollo tiempos de juego promedio que no alcanzan los 10 min/partido.

Como datos fundamentales aportados por la evidencia científica a tener en cuenta y en este caso que definen las demandas fisiológicas-carga interna para un partido de baloncesto destacan:

  1. El esfuerzo que realizan jugadores/as durante un partido se caracteriza desde una perspectiva fisiológica por una alta exigencia de las capacidades dependientes de los sistemas cardiovascular, metabólico (aeróbico y anaeróbico) y neuromuscular.
  2. La frecuencia cardiaca (FC)  promedio se sitúa entre 160–170 lat/min y en un rango que oscila entre 140-208 lat/min.
  3. Se observa que alrededor del 75 % del tiempo efectivo de juego la FC se mantiene por encima del 85% de la FC máxima (Hulka, 2013; Venkurik & Nycodim, 2015).
  4. La concentración de lactato en sangre durante el juego alcanzan valores entre 5-9 mlmol/l (McInnes, 1995).
  5. La intensidad percibida del esfuerzo (IPE) durante el partido en una escala de Borg modificada 1-10 se sitúa en valores promedios 9-10 (Silva, 2006).

Conforme a todos estos datos se puede definir al baloncesto desde una perspectiva biomecánica y fisiológica como un deporte colectivo donde los participantes desarrollan un juego con balón de esfuerzo intermitente de alta intensidad y carga variable. Resulta indispensable tener en cuenta todos estos aspectos a la hora de enfocar con eficiencia el entrenamiento tanto de jugadores-as como de equipos.

Modelos de periodización y su aplicación al entrenamiento

En entrenamiento deportivo se habla de periodización cuando la carga de esfuerzo se planifica y organiza de forma estratégica durante las diferentes unidades temporales que componen el proceso.

El objetivo de la periodización es conseguir adaptaciones a corto, medio y largo plazo de aquellos sistemas funcionales que condicionan el rendimiento en el deporte y que se produce al implementar un proceso sistemático y distribuido de forma inteligente en el tiempo.

La periodización como estrategia de entrenamiento comenzó su aplicación en el deporte de rendimiento aproximadamente hace seis décadas en la URSS, cuando descubrimientos científicos sobre fisiología del ejercicio se emplearon para el entrenamiento de deportistas de alto nivel.

En la actualidad se confrontan dos modelos para la periodización del entrenamiento en el deporte de competición: un modelo tradicional de preparación multifacética (Matveyev) y un modelo alternativo de preparación concentrada o por bloques (Issurin).

En este artículo de revisión de Issurin (2010) se analizan ambas propuestas, sus características y en que contextos específicos se recomienda uno u otro modelo según las variables que condicionan su aplicación.

Issurin, V. B. (2010). New horizons for the methodology and physiology of training periodization. Sports medicine, 40(3), 189-206.